Коэффициент линейного расширения бетона

Коэффициент линейного расширения бетона

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10-6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10-6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град-1) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник: В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Практическая плотность тяжелого (обычного) бетона составляет 2,3 г/см3 = 2300 кг/м3. (1,8-2,7 г/см3 ).

Усадка и набухание бетона.

Изменение размера бетонных конструкций из-за изменения влажности бетона это усадка и набухание. Происходит даже при неизменной температуре.

Усадка бетона имеет довольно сложную природу, но факт в том, что при твердении бетона на воздухе — при высыхании он будет иметь усадку порядка 0,3 мм на каждый метр линейного размера. Чем больше была доля цемента в растворе, тем выше усадка. При большой толщине бетона он высохнет снаружи, а внутри — еще нет, что приводит к появлению внутренних напряжений и дефектам.

Обратный процесс — набухание сухого бетона под действием влаги характеризует та-же величина 0,3 мм/м. Чем больше была доля цемента в растворе, тем выше набухание.

Поэтому, даже для работы бетонной конструкции в условиях постоянной температуры необходимо преусматривать усадочные швы.

Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Изменение линейного размера бетона под действием температуры характеризуется линейным коэффициентом теплового (температурного) расширения. Характерной величиной коэффициента для бетона является 0,00001 (°С)-1, следовательно, при изменении температуры на 80 °С (-40/+40 °С) расширение достигает примерно 0,8 мм/м. Таким образом, в любой бетонной конструкции необходимы температурные швы.

Температурно усадочный шов в РФ уж никак не может быть менее 1,1 мм на метр линейного размера (0,3 мм — усадка, 0,8 — температурный), в СНИПах — величины выше и они, конечно, обязательны, когда обязательны. Имейте в виду, что температурные колебания более 80 °С почти наверняка вызовут растрескивание бетона с жестким наполнителем из-за разницы в тепловом раширении раствора и наполнителя.

Теплопроводность монолитного бетона в воздушно-сухом состоянии 1,35 Вт/(м*°С) = 1,5 ккал/(ч*м*°С). Высокая теплопроводность тяжелого бетона требует обязательного утепления наружных бетонных стен.

Теплопроводность пористых бетонов — от 0,35 до 0,7 Вт/(м*°С) = 0,3-0,6 ккал/(ч*м*°С), но при огромном снижении прочности.

Теплоемкость удельная тяжелого и пористых бетонов в сухом состоянии — порядка 1 кДж/(кг*°С) = 0,2 ккал/(кг °С)

Теплоемкость объемная тяжелого бетона — порядка 2,5 кДж/(м3*К) а пористых — зависит от плотности.

Теплоемкость удельная бетонной смеси (незастывшей) сотавляет порядка 1,5 кДж/(кг*°С) = 0,3 ккал/(кг °С), но помните — смесь легче тяжелого бетона и тяжелее пористого.

Теплоемкость бетона Коэффициент расширения бетона

При строительстве домов с использованием бетона, всегда производятся расчеты, так вот для этого обязательно нужно знать удельную теплоемкость бетона. Удельная теплоемкость или просто теплоемкость бетона, очень важна и без нее не обойтись, в строительстве, когда например рассчитывается теплопроводность конструкции, для того что определить расходы на ускорение твердения строения из бетона.

Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Меняющийся размер бетона, из за влияния температуры, обозначается коэффициентом расширения бетона. Размер этого коэффициента расширения бетона равен 0.00001 (ºС)-1, а это означает, что если температура изменится на 80 ºС, то расширение будет около 0.8 мм/м. Получается, что для любой бетонной постройки требуются температурные швы.

Температурно усадочные швы

Температурно усадочные швы, в России должны быть начиная от 1.1 мм на 1м, делая вывод из расчета 0.3 мм — это усадка + 0.8 — температурный коэффициент. В строительных нормах и правилах (СНИП), размеры больше, так же стоит учитывать и то, что изменения температур порядка 80 ºС и больше, вызывают трещины в бетоне, который имеет жесткий наполнитель внутри, потому что существует разница коэффициентов расширения раствора и внутреннего наполнителя.

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона

Теплоемкости бетонов

Теплопроводность монолитных бетонов при условии что он воздушно-сухой составляет порядка 1.35 Bт/(m*ºC) = 1.5 ккал/(ч*м*ºС). Высокие характеристики теплопроводности такого тяжелого бетона, заставляют обязательно использовать утепление наружных стен из монолитного бетона.

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.

  1. Значит, теплоемкость бетона чаще всего от 0.17 и до 0.22 ккал/кг. Как и теплоемкость у многих каменных материалов.
  2. Становится понятно, почему дерево теплое, а бетон холодный, все из за низкой теплоемкости бетона. Теплопроводность дерева 0.6-0.7, что почти в 3 раза больше.
  3. Коэффициент расширения бетона — показывает изменение бетона. Для бетона он равняется 10*10^-6. Почти как и у коэффициента расширения стали (в зависимости от марки они так же изменяются), в связи с чем железобетонные конструкции очень распространены.

Температурные деформации бетона

Бетон, как и другие материалы, расширяется при нагревании и сжимается при охлаждении. В среднем коэффициент линейного расширения бетона составляет. Однако в действительности он колеблется в зависимости от состава бетона и свойств заполнителя и вяжущего [10]. С увеличением содержания цементного камня коэффициент линейного расширения увеличивается. Например, в одном из опытов раствор состава 1:3 имел , а цементный камень ? . Определённое влияние на коэффициент линейного расширения оказывает вид заполнителя. Например, бетон на граните в опытах показал, бетон на керамзите ?, бетон на известняке ?. Зависимость коэффициента линейного расширения бетона от коэффициента линейного расширения заполнителя приведена на рисунке 4.1.

Рисунок 4.1. Зависимость коэффициента линейного расширения бетона от коэффициента линейного расширения заполнителя: 1 — водное твердение; 2 ? воздушное твердение

Изменение температуры в пределах мало влияет на коэффициент температурного расширения сухого бетона, если при этом в бетоне отсутствуют физико-химические превращения. При изменении температуры влажного бетона температурные деформации складываются с влажностными усадками или расширением. При замерзании влажного бетона существенное влияние на его деформации оказывает образование льда в порах и капиллярах материала. В ряде случаев вместо деформаций сжатия при остывании бетона ниже могут наблюдаться деформации расширения, вызываемые давлением образующегося льда.

Читать еще:  Как утеплить дом из газобетона

При нагревании температурная деформация бетона одновременно состоит из двух видов деформаций [9]: обратимая деформация — температурное расширение и необратимая — температурная усадка. Известная часть температурной деформации бетона является необратимой. Накапливающиеся при циклическом воздействии знакопеременные температурные остаточные деформации могут в несколько раз превышать предельную растяжимость бетона. Ко второй части температурной деформации относим соответственно деформацию полос бетона между трещинами.

Температурные деформации железобетонных элементов [9] не равны температурным деформациям бетона или арматуры, а являются функциями этих деформаций и зависят от степени армирования и вида арматуры и бетона, температуры и влажности бетона. Сначала рассмотрим влияние на деформации арматуры температурных деформаций бетона при частичном нарушении сцепления арматуры с бетоном. Это влияние проявляется двояко, из-за чего предварительно деформация бетона разделена на две части. Первая часть связана с расширением бетона по нормали к трещинам. Она влияет непосредственно на раскрытие трещин и через этот факт — на смещение арматуры относительно берега трещины.

С целью изучения влияния степени понижения температуры и увлажнения материала [9] на развитие температурных деформаций бетона при низких отрицательных температурах, были исследованы температурные деформации бетона в автоматической термокамере МПС-500, обеспечивающей температуру от 100 до . Температура в камере контролировалась по показаниям термометров сопротивления с автоматической непрерывной записью её и по показаниям ртутного термометра, дополнительно установленного в рабочем объёме камеры. Температура внутри образцов определялась по показаниям термопар, заложенных при формовании.

На предел огнестойкости изгибаемых элементов в условиях ограниченных продольных деформаций [9] существенное влияние оказывают температурные деформации бетона. Чем больше относительная величина температурных деформаций, то есть чем меньше усадка бетона, тем быстрее достигает своего максимального значения продольное усилие сжатия. Для статических расчётов необходимо иметь данные об изменении механических, упругопластических свойств и температурных деформациях бетона и арматуры при воздействии высоких температур и нагрузок, а также опытные предельные состояния железобетонных элементов при стандартном пожаре, которые можно получить только по результатам испытаний.

Деформации бетона, возникающие под влиянием изменения температуры, зависят от коэффициента линейных температурных деформаций бетона. Этот коэффициент зависит от вида цемента, заполнителя, влажностного состояния бетона и может изменяться в пределах 30%. Температурные деформации расширения пропаренного бетона и особенности бетона автоклавного твердения при одинаковой влажности и тех же составляющих значительно превосходят температурные деформации бетона нормального твердения.

При огневом воздействии происходят дополнительные потери предварительного напряжения от температурной усадки и ползучести бетона на уровне продольной арматуры, от релаксации напряжений в арматуре, разности температурных деформаций бетона и арматуры и снижения модуля упругости арматуры при нагреве.

Для предварительно напряжённых конструкций немаловажно сохранить предварительное напряжение в арматуре во время и после пожара, потеря которого происходит в основном за счёт усадки и ползучести бетона, релаксации напряжения в арматуре и разности температурных деформаций бетона и арматуры. При температуре от 450 до коэффициент температурного расширения уменьшается, с 550 до появляется огневая усадка керамзитоперлитобетона, вызванная дегидратацией гидрата окиси кальция и усадкой перлита при этих температурах. Коэффициент усадки керамзитоперлитобетона классов B25 и B30 достигает своего максимального значения при .

Для расчёта железобетонных сооружений, подвергающихся действию повышенных технологических температур с внутренней стороны и отрицательных температур с наружной, необходима также информация о температурных деформациях бетона при действии отрицательных температур. Причём температрные деформации следует определять для бетона, подвергавшегося нагреву, или без нагрева, но в процессе эксплуатации не подвергавшегося интенсивному водонасыщению. Г. И. Горчаковым, В. М. Москвиным и рядом других авторов установлено, что для свободно высыхающего старого бетона, не подвергавшегося увлажнению и предварительному нагреву, линейные температурные деформации бетона при замораживании до монотонно возрастают с понижением температуры.

В виде пара вода перемещается под влиянием градиента упругости паров [9]. Известно, что упругость пара у переохлаждённой воды выше, чем у льда, и с понижением температуры этот градиент возрастает. Поэтому процесс перегонки пара ко льду, находящемуся в крупных порах, от переохлаждённой воды в мелких порах, с понижением температуры должен ускоряться не исключая возможной миграции воды из твёрдой фазы (льда) от более мелких к более крупным кристаллам льда посредством сублимации по закону Томсона. Также путём плавления части льда в местах повышенного давления, отжатия и повторного замораживания образовавшейся воды в местах пониженного давления. Миграция воды из мелких пор и замерзанием её в более крупных порах при замораживании объясняется характером кривых температурных деформаций бетона и цементного камня при оттаивании.

Пары воды и воздух в бетоне [11] при нагреве движутся в основном вверх, в сторону открытой поверхности изделия, так как здесь, особенно у верхних слоёв, не ограниченных формой, требуется наименьшее усилие для их раздвижки и разрыхления. Поэтому визуально заметно вспучивание при нагреве и слоистая структура материала наблюдается только в верхних слоях. Для внутренних же зон вышележащие слои играют роль пригруза и препятствуют в какой-то степени развитию деструктивных явлений, которые можно было бы наблюдать визуально.

Изучение температурных деформаций бетона [11] при различных способах тепловой обработки показало, что, остаточные расширения, характеризующие степень структурных нарушений, зависят от скорости нагрева и начальной прочности, достигнутой бетоном до наложения теплового воздействия. Установлено, что бетон, имеющий определённую начальную прочность, приобретает в процессе термообработки только деформации, соответствующие температурному расширению затвердевшего материала. Объясняется это тем, что такой бетон воспринимает возникающие в результате нагрева внутренние напряжения, снижая тем самым их деструктивное воздействие. Исходя из этих представлений С. А. Мироновым и Л. А. Малининой введено понятие о «критической» прочности — минимальной прочности бетона, при которой наложенное тепловое воздействие не приводит к структурным нарушениям. Расширение бетона с такой прочностью практически равно температурному расширению затвердевшего бетона того же состава.

Деформации температурной усадки и ползучести бетона при нагреве определяются опытным путём в лаборатории. Результаты определения деформаций температурной усадки [3] при кратковременном и длительном нагреве оформляются в виде диаграммы, на которой по оси абсцисс откладывается температура, а по оси ординат — величина температурных деформаций при первом, втором и третьем нагреве и охлаждении. При первом нагреве вычисляется температурная деформация бетона, при втором и третьем нагреве — деформация температурного расширения бетона. Разность деформации температурного расширения и температурной деформации представляет деформацию температурной усадки при кратковременной и длительной нагрузках

Линейная относительная температурная деформация — относительное изменение линейных размеров образца, вызванная совместным действием температурной усадки бетона.

Линейная относительная деформация температурного расширения ? относительное увеличение размера образца, вызванное температурным расширением бетона при нагрузке.

Линейная относительная температурная деформация усадки ? относительное уменьшение размеров ненагруженного образца, вызванное испарением из него влаги при нагрузке.

Деструктивные процессы при замораживании и постепенное разрушение разнообразны [8]. При нагревании и охлаждении компоненты бетона — цементный камень, заполнители и вода в его порах изменяют объём в соответствии с присущими каждому материалу коэффициентами температурных деформаций. Различие в этих коэффициентах может служить одной из причин появления напряжения в зонах контакта материалов. Однако основной причиной разрушения бетона является давление льда, образующегося при фазовом переходе воды в лёд и с увеличением объёма до 9% или гидравлическом давлении воды, отжимаемой льдом. На морозостойкость бетона оказывает влияние степень его водонасыщения, минеральный состав цемента, от которого зависит структура цементного камня и его перового пространства, вид и крупность зёрен заполнителя, водоцементное отношение, введение пластифицирующих воздухововлекающих добавок.

Для железобетонных пролётных строений мостов характерны два типичных случая замораживания бетона. К первому случаю относится разрушение бетона на горизонтальных и наклонных поверхностях поясов балок, подверженных увлажнению атмосферными осадками. Накапливавшаяся влага может задерживаться на бетонной поверхности и проникать внутрь пояса железобетонной балки. Ко второму случаю относятся вертикальные поверхности стенок и поясов при эпизодическом увлажнении атмосферными осадками и замораживании на воздухе. Длительная служба железобетонных конструкций в условиях агрессивного воздействия природной среды может быть обеспечена коррозионной стойкостью, как бетона, так и арматуры.

Читать еще:  Мелкозаглубленный ленточный фундамент не зарывайте фундаменты вглубь

Температурные деформации бетона близки к температурным деформациям стали, что обеспечивает их надёжную совместную работу в железобетоне при различных температурах окружающей среды.

СНиП 2.06.08-87. Бетонные и железобетонные конструкции гидротехнических сооружений Часть 4

7. РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ

КОНСТРУКЦИЙ НА ТЕМПЕРАТУРНЫЕ

И ВЛАЖНОСТНЫЕ ВОЗДЕЙСТВИЯ

7.1. Учет температурных воздействий следует производить:

а) при расчете бетонных конструкций по прочности в соответствии с п. 5.1, а также при расчете их по образованию (недопущению) трещин в случаях, когда нарушение монолитности этих конструкций может изменить статическую схему их работы, вызвать дополнительные внешние силовые воздействия или увеличение противодавления, привести к снижению водонепроницаемости и долговечности конструкции;

б) при расчете статически неопределимых железобетонных конструкций, а также при расчете железобетонных конструкций по образованию (недопущению) трещин в случаях, указанных в п. 6.1;

в) при определении деформаций и перемещений элементов сооружений для назначения конструкций температурных швов и противофильтрационных уплотнений;

г) при назначении температурных режимов, требуемых по условиям возведения сооружения и нормальной его эксплуатации;

д) при расчете тонкостенных железобетонных элементов непрямоугольного сечения (тавровые, кольцевые), контактирующих с грунтом.

Температурные воздействия допускается не учитывать в расчетах тонкостенных конструкций, если обеспечена свобода перемещений этих конструкций.

7.2. При расчете бетонных и железобетонных конструкций следует учитывать температурные воздействия эксплуатационного и строительного периодов.

К температурным воздействиям эксплуатационного периода относятся климатические колебания температуры наружного воздуха, воды в водоемах и эксплуатационный подогрев (или охлаждение) сооружения.

Температурные воздействия строительного периода определяются с учетом экзотермии и других условий твердения бетона, включая конструктивные и технологические мероприятия по регулированию температурного режима конструкции, температуры замыкания строительных швов, полного остывания конструкции до среднемноголетних эксплуатационных температyp, колебаний температуры наружного воздуха и воды в водоемах.

Конкретный перечень температурных воздействий, учитываемых в расчетах бетонных и железобетонных конструкций основных видов гидротехнических сооружений, должен устанавливаться нормами на проектирование соответствующих видов сооружений.

7.3. В расчетах бетонных и железобетонных конструкций гидротехнических сооружений на температурные воздействия при соответствующем обосновании допускается учитывать тепловое влияние солнечной радиации.

7.4. Учет влажностных воздействий при расчете бетонных и железобетонных конструкций должен быть обоснован в зависимости от возможности развития усадки или набухания бетона этих конструкций.

Допускается не учитывать усадку бетона в расчетах:

тонкостенных конструкций, находящихся под водой, контактирующих с водой или засыпанных грунтом, если были предусмотрены меры по предотвращению высыхания бетона в период строительства.

7.5. Температурные и влажностные поля конструкций рассчитываются методами строительной физики с использованием основных положений, принятых для нестационарных процессов.

7.6. Данные о температуре и влажности наружного воздуха и другие климатологические характеристики должны приниматься на основе метеорологических наблюдений в районе строительства. При отсутствии таких наблюдений необходимые сведения следует принимать по СНиП 2.01.01-82 и по официальным документам Государственной гидрометеорологической службы.

Температура воды в водоемах должна определяться на основе специальных расчетов и по аналогам.

7.7. Для сооружений I класса теплофизические характеристики бетона устанавливаются на основании специальных исследований. Для сооружений других классов и при предварительном проектировании сооружений I класса указанные характеристики бетона допускается принимать по табл. 1 и 2 рекомендуемого приложения 2.

7.8. Деформативные характеристики бетона, необходимые для расчета термонапряженного состояния конструкций, допускается принимать:

начальный модуль упругости бетона, МПа, в возрасте менее 180 сут — по формуле

где — безразмерный параметр, принимаемый по табл. 3 рекомендуемого приложения 2;

— возраст бетона, сут;

начальный модуль упругости бетона в возрасте 180 сут и более следует принимать в соответствии с п. 2.15.

Характеристики ползучести бетона следует принимать по табл. 4 рекомендуемого приложения 2.

Для сооружений I класса деформативные характеристики бетона следует уточнять исследованиями на образцах из бетона производственного состава.

7.9. Расчет бетонных и железобетонных конструкций по образованию (недопущению) температурных трещин следует производить по формулам:

а) при проверке образования трещин и определении их размеров

Для образования поверхностной трещины необходимо, чтобы условие (74) выполнялось в пределах зоны растяжения, глубина которой в направлении, перпендикулярном поверхности, была бы не менее 1,3 , где — максимальный размер крупного заполнителя бетона;

б) при недопущении трещин в конструкциях, рассчитываемых по второй группе предельных состояний,

в) при недопущении трещин в конструкциях, рассчитываемых по первой группе предельных состояний,

где и — соответственно нормативное и расчетное сопротивления бетона на осевое растяжение, определяемые в соответствии с п. 2.11;

— коэффициент перехода от нормативного сопротивления бетона на осевое растяжение к средней прочности на осевое растяжение бетона производственного состава, определяемый в соответствии с п. 7.10;

— коэффициент, учитывающий зависимость прочности бетона на осевое растяжение от возраста и принимаемый в соответствии с п. 7.11;

— модуль упругости бетона, определяемый в соответствии с п. 7.8;

— коэффициент условий работы, равный для массивных сооружений — 1,1, для остальных — 1,0;

— работа растягивающих напряжений на соответствующей разности полных и вынужденных температурных деформаций в бетоне:

где — текущее время;

— температура бетона в момент времени ;

— температурный коэффициент линейного расширения бетона;

— деформации бетона, определенные с учетом переменных во времени модуля упругости и ползучести бетона;

— растягивающие напряжения в бетоне:

где — напряжения в бетоне, определенные с учетом переменных во времени модуля упругости и ползучести бетона.

7.10. Коэффициент определяется по формуле

где — коэффициент, зависящий от установленной обеспеченности гарантированной прочности бетона и равный 1,64 при = 0,95 и 1,28 при = 0,90;

— коэффициент вариации прочности бетона производственного состава.

В проектах бетонных и железобетонныx конструкций гидротехнических сооружений следует принимать = 0,135 при = 0,95, = 0,17 при = 0,90.

7.11. Значение в зависимости от возраста бетона следует принимать для строительного периода по табл. 5 рекомендуемого приложения 2, для эксплуатационного периода, как правило, равным 1,0.

Для сооружений I и II классов коэффициент следует уточнять исследованиями на крупномасштабных образцах из бетона производственного состава.

7.12. Для сооружений I и II классов в технико-экономическом обосновании, а для сооружений III и IV классов — во всех случаях допускается расчет по образованию (недопущению) трещин от температурных воздействий производить по формуле

где — температурные напряжения в момент времени ;

— коэффициент, определяемый согласно указаниям п. 5.3;

— предельная растяжимость бетона, определяемая по табл. 6 рекомендуемого приложения 2;

— коэффициент, учитывающий зависимость от возраста бетона, определяемый по табл. 7 рекомендуемого приложения 2.

При определении коэффициента значения следует принимать равными длине участка эпюры растягивающих напряжений в пределах блока. В расчетах по формуле (79) следует принимать при см или при наличии на участке эпюры растягивающих напряжений зоны с нулевым градиентом напряжений.

ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

Усилия от внешних нагрузок и воздействий

в поперечном сечении элемента

М — изгибающий момент;

N — продольная сила;

Q — поперечная сила.

— расчетные сопротивления бетона осевому сжатию соответственно для предельных состояний первой и второй групп;

— расчетные сопротивления бетона осевому растяжению соответственно для предельных состояний первой и второй групп;

— расчетные сопротивления арматуры растяжению для предельных состояний первой и второй групп;

— расчетное сопротивление поперечной арматуры растяжению для предельных состояний первой группы при расчете сечений, наклонных к продольной оси элемента;

— расчетное сопротивление арматуры сжатию для предельных состояний первой группы;

— начальный модуль упругости бетона при сжатии и растяжении;

— модуль упругости арматуры;

— отношение соответствующих модулей yпpугости арматуры и бетона .

Характеристики положения продольной арматуры

в поперечном сечении элемента

— обозначение продольной арматуры:

а) для изгибаемых элементов — расположенной в зоне, растянутой от действия внешних усилий;

б) для сжатых элементов — расположенной в зоне, растянутой от действий усилий или у наименее сжатой стороны сечения;

в) для внецентренно растянутых элементов-наименее удаленной от точки приложения внешней продольной оси;

г) для центрально растянутых элементов — всей в поперечном сечении элемента;

— обозначение продольной арматуры:

а) для изгибаемых элементов — расположенной в зоне, сжатой от действия внешних усилий;

Читать еще:  Можно ли заливать бетон зимой

б) для сжатых элементов — расположенной в зоне, сжатой от действия внешних усилий или у наиболее сжатой стороны сечения;

в) для внецентренно растянутых элементов — наиболее удаленной от точки приложения внешней продольной силы.

— ширина прямоугольного сечения, ширина ребра таврового или двутаврового сечения;

— высота прямоугольного, таврового или двутаврового сечения;

— расстояние от равнодействующей усилий соответственно в арматуре и до ближайшей грани сечения;

-рабочая высота сечения ( );

— высота сжатой зоны сечения (бетона);

-относительная высота сжатой зоны бетона, равная

— расстояние между хомутами, измеренное по длине элемента;

— эксцентриситет продольной силы N относительно центра тяжести приведенного сечения;

— расстояние от точки приложения продольной силы соответственно до равнодействующей усилий в арматуре и ;

— номинальный диаметр арматурных стержней;

— площадь всего бетона в поперечном сечении;

— площадь сечения сжатой зоны бетона;

— площадь приведенного сечения элемента;

— площадь сечений арматуры соответственно и ;

— площадь сечения хомутов, расположенных в одной нормальной к продольной оси элемента плоскости, пересекающей наклонное сечение;

-площадь сечения отогнутых стержней, расположенных в одной наклонной к продольной оси элемента плоскости, пересекающей наклонное сечение;

— момент инерции сечения бетона относительно центра тяжести сечения элемента;

— момент инерции приведенного сечения элемента относительно его центра тяжести;

— момент инерции площади сечения арматуры относительно центра тяжести сечения элемента;

— момент инерции сжатой зоны бетона относительно центра тяжести сечения;

— статический момент площади сечения сжатой зоны бетона относительно точки приложения равнодействующей усилий в арматуре ;

— статические моменты площади сечения всей продольной арматуры относительно точки приложения равнодействующей усилий соответственно в арматуре и .

— надежности по назначению сооружения;

— условий работы сооружения;

— условий работы бетона;

— условий работы арматуры;

— армирования, определяемый как отношение площади сечения арматуры к площади поперечного сечении элемента , без учета свесов сжатых и растянутых полок.

ХАРАКТЕРИСТИКИ БЕТОНА ДЛЯ РАСЧЕТА КОНСТРУКЦИЙ

Купить бетон

Наш персонал обладает большим опытом и гордится качеством предоставляемых услуг.

Доставку бетона и бетонного раствора высокого качества

КУПИТЬ БЕТОН

Купить бетон по оптимально низкой цене можно только у производителя. Союз бетонных заводов Санкт-Петербурга и Ленинградской области осуществляет прямые продажи бетона и доставку бетона до объекта, минуя целую сеть цепочек посредников и перекупщиков, что гарантирует выгоду по стоимости бетона для строительных организаций и частных лиц.

Заказы выполненные сегодня

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

Prev Next

Бетонный завод. Доставка бетона в Рощино

Купить бетон в Рощино. Бетон доставка: бетон М400 в количестве 15 кубов, с доставкой в Рощино. Нужна стоимость бетона за куб. и расчет стоимости доставки этого бетона.

Бетонный завод. Доставка бетона в Сосново

Купить бетон в Сосново. Бетон доставка: Сколько будет стоить доставка бетона в Сосново 8.м3 бетона марки М250. Какие бетонные заводы находятся в непосредственной близости от Сосново.

Бетонный завод. Доставка бетона в Красное село

Купить бетон в Красном селе. Бетон доставка: Необходимо рассчитать стоимость бетона с доставкой от 6 до 8м3 бетона в красное село. Оплата за бетон будет по безналичному расчету.

Бетонный завод. Доставка бетона в Гатчину

Купить бетон в Гатчине. Бетон доставка: Какова стоимость карьерного песка средней зернистости и бетона за куб с бетонного завода? Доставка в Гатчину + 5 км. Нужно доставить 20м3 бетона.

Бетонный завод. Доставка бетона в Волосово

Купить бетон в Волосово. Бетон доставка: Сколько стоит куб бетона с доставкой в Волосово. Надо 22м. куб. бетона марки М250.

Бетонный завод. Доставка бетона во Всеволожск

Купить бетон во Всеволожске. Бетон доставка: Сколько будет стоить песок карьерный 30 м3 и доставка 20 м3 бетона. Бетон необходим с завода. Доставка во Всеволожск по Дороги Жизни в сторону Романовки. Мне еще надо засыпать овраг, может купить супесь, что это такое.?

Бетонный завод. Доставка бетона в Тосно

Бетон доставка: На объект в Тосно необходимо 70 м3 бетона. Желательно марку бетона не ниже М300. Интересует стоимость бетона и доставки до объекта.

Бетонный завод. Доставка бетона в Лугу

Купить бетон в Луге. Бетон доставка: бетон М400 в количестве 15 кубов, с доставкой в Рощино. Нужна стоимость бетона за куб. и расчет стоимости доставки этого бетона.

Бетонный завод. Доставка бетона в Кировск

Купить бетон в Кировске. Бетон доставка: бетон М400 в количестве 15 кубов, с доставкой в Рощино. Нужна стоимость бетона за куб. и расчет стоимости доставки этого бетона.

Бетонный завод. Доставка бетона в Пушкин

Купить бетон в Пушкене. Бетон доставка: Под фундамент дома необходимо несколько машин бетона доставка будет в выходные. Доставку нужно будет разбить на 10 кубов бетона, 13 кубов бетона и 6 кубов бетона. Рассчитайте стоимость бетона и стоимость доставки до объекта в Пушкин.

Бетонный завод. Доставка бетона в Колпино

Купить бетон в Колпино. Бетон доставка: На строительную площадку в Колпино требуется 70 м3 бетона М250. Сколько будет стоить бетон с завода. Пришлите полный прайс лист на все марки бетона.

Бетонный завод. Доставка бетона в Ломоносов

Купить бетон в Ломоносове. Бетон доставка: Рассчитайте цену за куб бетона М200 с доставкой в Ломоносов и отгрузкой бетона с бетонного завода. Какая скидка будет при заказе от 300 кубов? Возможно ли оплата по безналу с отсрочкой или в кредит.

Бетонный завод. Доставка бетона в Парголово

Купить бетон в Парголове. Бетон доставка: Нужен срочно бетон недорого с бетонного завода с доставкой до объекта в Парголово. Доставить нужно тремя миксерами в каждом будет по 10 кубов бетона. Еще из дополнительного оборудования нужен автобетононасос. Подача бетона будет на расстоянии 25 метров. Дайте коммерческое предложение. Срочно.

Бетонный завод. Доставка бетона в Белоостров

Купить бетон в Белоострове. Бетон доставка: Я представитель крупной строительной компании. Занимаемся строительством загородных домов. Нужен постоянный договор на поставку бетона и изготовление бетона по нашей рецептуре бетона. Пришлите коммерческое предложение или договор от ближайшего бетонного завода на поставку бетона в Белоостров.

Бетонный завод. Доставка бетона в Кронштадт

Купить бетон Кронштадт. Бетон доставка: Нужен бетон гидротехнический В30 (М400) W12 F300 . Сколько стоит бетон, условия доставки В30 гидротехнического бетона до объекта в Кронштадте? Какая стоимость доставки бетона?

Бетонный завод. Доставка бетона в Колтуши

Купить бетон в Колтушах. Бетон доставка: С завода в Колтушах нужен бетон B22.5 (M300). Нужна цена за куб бетона. Просчитайте стоимость доставки. Везем бетон в частный сектор приблизительно 20 км от города.

Tovbeton.ru – высокотехнологичный портал подбора поставщиков бетона в Санкт-Петербурге. В нашей системе собраны крупнейшие заводы по производству бетона. Мы собрали огромную базу заводов по производству бетона в Санкт-Петербурге и можем предложить самые выгодные цены на бетон.

Наши клиенты – успешные компании, в приоритете у которых получение новых заказов и стремление к росту. Мы предоставляем полный набор услуг – от лабораторных исследований до доставки бетона на строительные площадки Санкт-Петербурга и Лен. области.

Стоимость доставки определяется и рассчитывается в каждом конкретном случае отдельно и зависит от района доставки, марки бетона, близости нахождения бетонного завода или бетонно-смесительных узлов (БСУ).

Осуществить заказ вы можете по контактным телефонам отдела продаж завода или написать на бетонный завод по форме обратной связи. Менеджеры отдела продаж завода всегда помогут выбрать варианты поставки бетона, возможных скидок на объемы производства бетона и бесплатно проконсультирую по возникшим вопросам.

коэффициент линейного расширения бетона. коэффициент линейного расширения бетона в Санкт-Петербурге. коэффициент линейного расширения бетона в СПб.

Производство бетонных смесей и доставка бетона по Санкт-Петербургу и Ленинградской области осуществляется в самые оптимальные сроки, чтобы заливка бетона происходила качественно и все строительные работы на объекте выполнялись по установленным графикам. Доставка бетона выполняется машинами объемом от 7 м3 до 10 м3, в зависимости от поставленных задач.

Большое количество бетонных заводов по Санкт-Петербургу и Лен. области позволяет оперативно доставлять бетон и бетонные смеси на объекты строительства.

Ссылка на основную публикацию
Adblock
detector