Проводит ли бетон электрический ток

Бетон электропроводящий

Большое внимание уделяется в настоящее время не только исследованию физико-механических свойств бетона, но и его электротехническим характеристикам, разработке состава с заранее заданными электрическими характеристиками.

Если будет найден путь превращения бетона в электропроводящий материал, это приведет к революционным изменениям в строительстве и электроэнергетике.

Деление материалов на конструктивные и электротехнические всегда существовало во всех отраслях техники. Объяснить это можно тем, что известные электротехнические материалы из-за специфических физико-механических свойств, как правило, невозможно было использовать как конструктивные.

Обычный бетон при определенной температуре и влажности обладает способностью проводить электрический ток, но это его качество не является стабильным. Помимо этого, в большинстве случаев электропроводность обычного бетона приносила только вред, так как под воздействием блуждающих токов сильно повышалась коррозия арматуры в железобетонных изделиях.

Эту способность пытались использовать для заземления строительных конструкций, эксплуатирующихся под воздействием электрического тока. Но такое использование бетона возможно только в том случае, если он будет стабильным электропроводником, тогда как сезонные колебания температуры и влажности изменяло электрическое сопротивление бетона в 5-10 раз. Объясняется это тем, что насыщение бетона водой приводит к переходу легкорастворимых компонентов цементного камня в жидкую фазу и бетон становится полупроводником. Соответственно высушивание бетона приводит к резкому падению проводимости.

Улучшить электрические свойства бетона предлагалось разными способами, большинство из которых должно было воспрепятствовать проникновению влаги внутрь бетона или уменьшить ее воздействие. Во Франции был придуман, так называемый, «изоляционный бетон Ламберта», который приготавливался на водных битумных эмульсиях. Битум, заполняя поры в теле бетона, затруднял его увлажнение, стабилизируя электрическое сопротивление. Для повышения электросопротивления бетона, используемого для изготовления железобетонных шпал, в состав его вводили ионно-обменные смолы, которые связывали появляющиеся при увлажнении бетона свободные ионы, что приводило к снижению электропроводности жидкой фазы бетона, и всего материала в целом. Также, высказывались предложения полностью заменить цементную связку на полимерную, чтобы получить изоляционный бетон. Но до сих пор, попытки использовать проводящие свойства бетона во влажном состоянии не имели большого успеха.

В основу нынешних научных исследований положен совершенно другой принцип получения как токопроводящих, так и изоляционных бетонов:

  • для изоляционных бетонов ведется комплексное изучение свойств компонентов цементного вяжущего и различных их сочетаний, чтобы выделить те из них, которые в наибольшей степени близки к диэлектрикам, изучение роли пористости бетона.
  • для электропроводящих бетонов ведутся изыскания токопроводящих добавок в бетонную смесь, которые изменят свойства бетона в сторону повышения электропроводности. На этой основе ведутся попытки создать композиционный материал — специальный бетон с характерными качествами проводника электрического тока.

В результате исследовательских работ был создан электропроводящий бетон, который назвали бетэлом. Бетэл наряду со стандартными конструктивными свойствами обладает способностью проводить электрический ток. Предварительные исследования прочностных и электрических свойств бетэла показали, что он может быть получен с большим диапазоном электрических и механических свойств. Бетэл может найти широкое применение для изготовления панелей стен и перекрытий, полов, кровель с внутренним водостоком, фундаментов опор линий ЛЭП и так далее.

Как любой проводник при прохождении тока, бетэл нагревается, что позволит применять его для создания электроотопительных элементов строительных сооружений. В качестве нагревательных элементов можно будет использовать обычные стеновые панели и плиты межэтажных перекрытий. Конструкции из электропроводящего бетона позволят отказаться от сложных существующих систем отопления, позволят предложить множество принципиально новых решений, приведут к снижению эксплуатационных расходов, особенно в условиях холодного климата.

Планово-предупредительный ремонт — ППР – это комплекс мероприятий по надзору, обслуживанию и ремонту, которые регулярно проводятся по заранее составленному плану. Система ППР позволяет предупредить преждевременный износ технологического оборудования, вовремя его отремонтировать, предупредив аварии, постоянно поддерживать его в эксплуатационной готовности.

Проводит ли бетон электрический ток

Б.А. Крылов, д-р техн. наук, А.И. Ли, канд. техн. наук

В практике зимнего бетонирования монолитных конструкций одним из основных способов интенсификации твердения бетона стал электропрогрев. Этому способствовало то, что при минимальных энергозатратах он надежно гарантирует достижение бетоном в проектные сроки марочной прочности без ухудшения других физикомеханических и эксплуатационных свойств и позволяет одновременно решить некоторые поизводственные задачи, например, сократить сроки достижения бетоном «критической» прочности, т. е. продолжительность ухода за забетонированной конструкцией, ускорить сдачу конструкций под нагрузку и др.

Как известно, электропрогрев осуществляется путем непосредственного включения свежеуложенного бетона в электрическую цепь как активного сопротивления, вследствие чего физико-химические процессы гидратации и структурообразования бетона протекают в условиях электрического и электромагнитного воздействий. Исходя из этого эффект интенсификации твердения бетона можно объяснить не только температурным фактором, но и положительным влиянием на процессы гидратации и твердения таких электрофизических явлений, как электрофорез, электроосмос и электролиз. Хотя влияние последних практически малозначимо, попытки отдать приоритет в ускорении твердения бетона электрофизическим явлениям периодически возобновляются.

В результате этого появляются необоснованные рекомендации по эффективности их применения в технологии бетона, что вводит в заблуждение производственников. Примером тому является предлагаемая Московской ветеринарной академией обработка арболита, бетона и им подобных материалов на основе цементных вяжущих постоянным электрическим током знакопеременными импульсами. При наложении постоянного электрического тока явления электрофореза, электроосмоса и электролиза действительно должны происходить более интенсивно, чем при переменном токе промышленной часто ты. Основываясь на этом, авторы работы утверждают, что посто янный электрический ток знакопе ременных импульсов способствует диспергированию цементных частиц, повышению их реакционной способности, более полной гидратации и равномерному распределению цементного клея между непрогидратированными зернами цемента и за полнителя. По их мнению, уже через 1. 3 ч обработки можно полу чить распалубочную прочность бе тона.

Несмотря на то, что ранее про веденными исследованиями [4. 6] показана несостоятельность вышеприведенных утверждений, НИИЖБ с участием Московской ветеринарной академии и Московского лесотехнического института проводили исследования в производственных условиях экспериментального комбината строительных конструкций при изготовлении стеновых панелей из арболита. Одновременно в двух вертикальных формах трамбованием были отформованы панели размером 1,8х0,9х0,2 м. Одна панель была обработана постоянным током со знакопеременными импульсами с помощью генератора постоянного тока П-91 мощностью 50 кВА с при водом от асинхронного двигателя А2-82-4 мощностью 55 кВА. Направление токовых импульсов изменяли через каждые 5 мин с перерывом между ними в 1 мин вручную реверсирующим устрой ством, смонтированным на щите управления. Рабочее напряжение, подаваемое на электроды, подбира ли так, чтобы плотность тока на электродах составляла 40 А/м2. Другую панель обрабатывали пере менным током промышленной частоты с помощью сварочного трансформатора ТД-500 У2, причем подаваемое на электроды напряжение регулировали так, чтобы температурный режим прогрева полностью совпадал с темпера турным режимом первой панели. Продолжительность электрообра ботки обоих панелей составила 1ч 10 мин, в течение этого времени температура в центре панелей поднялась с 30 до 45 ° С. После этого электрическое воздействие было отключено и обе панели после часового выдерживания в цехе распалубливали. Проведенные эксперименты показали, что панели, подвергнутые обработке как постоянным, так и переменным током, сохраняют форму, однако визуальный осмотр показал, что и в том и в другом случае арболит не имел практически никакой прочности и снять панели с поддона невозможно. Лишь через сутки их с большой осторожностью распиливали на ку бы с ребром 20 см и испытывали на сжатие в возрасте 3, 7, 14, 28 и 90 сут.

Читать еще:  Пропитка для бетонного пола от пыли

Результаты испытаний свидетельствуют, что при обработке постоянным током знакопеременны ми импульсами прочность арболита в первые 7 сут несколько выше, чем при обработке переменным током, что объясняется, видимо, удалени ем большего количества механиче ски связанной влаги из-за явлений электроосмоса и интенсификации кристаллизационных процессов твердения цемента. Однако эта разница составляет всего 4. 5% и практического значения не имеет. В возрасте 14 и 28 сут прочность арболита, обработанного посто янным током знакопеременными импульсами, намного ниже, чем у обработанного переменным то ком: если в первом случае к 1 мес наблюдается недобор прочности до 25% из-за лишних влагопотерь на начальной стадии твердения, то во втором — прочность практически достигает марочной. Примерно такие же результаты получены нами в аналогичных ис следованиях, проведенных совме стно с трестом Оргтехлесстрой В/О Союзлесстрой на производ ственной базе СМУ-32 треста Кирлесстрой в Лузе. При обработке арболита постоянным током знако переменными импульсами, расход электроэнергии на 20. 25% боль ше, чем при обработке переменным электрическим током вследствие дополнительных потерь при пре образовании переменного тока в по стоянный и. затрат энергии на электролиз воды. Такие же исследования проводи ли на Мытищинском заводе Стройдеталь при изготовлении панелей типа ОС-5 из тяжелого бетона класса В12,5. Установлено, что изделия после распалубки сохраня ют форму при обработке как постоянным, так и переменным токами. Однако прочность бетона была незначительной.

Как видно из данных таблицы показанной выше, даже в возрасте 1 сут она не превышала 50%. В возрасте 3, 7 и 28 сут прочность бетона, обработанного переменным и постоянным токами, была практически одинаковой, что свидетельствует о влиянии лишь темпера турного фактора на интенсифика цию твердения бетона. Проведенные производственные испытания вновь подтвердили, что фактические удельные расходы электроэнергии зависят от температуры и длительности нагрева бето на, но в любом случае при посто янном токе они несколько выше, чем при переменном. Выполненные в НИИЖБе иссле дования выявили, что при обработке бетона постоянным электри ческим током наблюдается корро зия стальной арматуры из-за выделения кислорода при электролизе воды. По этой же причине интенсивно корродируют и стальные формы, в которых изготовляют сборные изделия. Во избежании этого предлагаются формы для сборных железобетонных изделий из нержавеющей стали или дерева. Однако для современного заводского производства эти решения не применимы. Аналогичная картина наблюдалась и при изготовлении опытной партии блоков с обработкой постоянным током на заводе Стройдеталь. Таким образом, при обработке постоянным током со знакопере менными импульсами электрофорез, электроосмос и электролиз практически не влияют на процесс твердения бетона, а его интенсифи кация обусловлена лишь температурным фактором, поэтому при электропрогреве бетонных и железобетонных изделий и конструкций следует применять переменный ток промышленной частоты, дающий такой же эффект, как и постоянный, и не требующий специальных генераторов для преобразования его в постоянный ток.

Электропроводимость бетона

Бетон и создаваемый на его основе железобетон на базе фибры или арматуры — основной конструкционный материал, который применяется как в массовом строительстве, так и для решения специфических задач. В последнем случае используются смеси с особыми свойствами как в незатвердевшем состоянии, так и в проектном возрасте. Одной из сфер, которая интересна с точки зрения эксплуатационных возможностей, считается регулирование электрических характеристик бетона.

Оглавление

Проблематика вопроса

В отличие от привычных направлений работы над упрочнением конструкций и увеличением сроков их эксплуатации, электрические свойства бетона пока находят ограниченное применение на практике. При этом многие разработчики уже обратили внимание на сферу создания специальных разновидностей бетона с заранее заданными пределами изменения электрических характеристик. Впрочем, даже исследование электропроводности и других аналогичных свойств традиционных бетонных смесей представляет интерес как с точки зрения их нового применения, так и из соображений прогнозирования стойкости строительных конструкций.

Рисунок 1. Использование электропроводящего бетона в дорожном строительстве

Интерес к указанному направлению исследовательских работ обусловлен широкими возможностями применения бетонов с заранее заданными электрическими характеристиками в строительстве, энергетике и прочих отраслях промышленности. Поэтому сейчас выделяют следующие главные направления исследований электрических свойств бетонов и разработки новых составов смесей:

  1. изучение электрических свойств применяемых на практике классов бетонных смесей и создание на основе этих знаний новых электроизоляционных бетонов с улучшенными характеристиками удельного электросопротивления и электрической прочности, малыми диэлектрическими потерями и диэлектрической проницаемостью, что важно для безопасности эксплуатации таких конструкций и увеличения срока их службы;
  2. разработка электропроводных составов с низким удельным электросопротивлением и сохранением стабильных электрических характеристик при изменении условий эксплуатации конструкций.

Все применяемые в технике материалы условно делятся на конструкционные и электротехнические. По технико-экономическим соображениям и из-за специфических механических и физико-химических свойств электротехнические материалы редко используются для решения конструкционных задач. Попытки использовать в конструировании строительных объектов бетоны с заданными электропроводящими или электроизоляционными свойствами предпринимались и ранее, но все они были неудачными. Основной причиной этого являлась нестабильность электрических характеристик, и невозможность их регулирования в заданных пределах.

Поэтому разработка на базе обычного бетона многофункционального материала с высокими конструкционными и заранее заданными необходимыми электрическими свойствами считается важной технической задачей с большими экономическими перспективами.

Поведение бетона при воздействии электрического тока

Традиционный бетон в обычных температурно-влажностных условиях эксплуатации проводит электрический ток, но этим его свойством невозможно управлять и стабильно контролировать. При этом, в современных условиях электропроводность бетона считается негативным свойством, поскольку она вызывает электрокоррозию арматуры в ЖБК под воздействием блуждающих токов.

Иногда электропроводность бетона пытаются использовать с целью заземления строительных конструкций. Такой прием возможен лишь тогда, когда бетон стабильно проводит электрический ток в процессе эксплуатации конструкции. Но вследствие сезонных колебаний влажности и температуры электросопротивление бетона может меняться на несколько порядков. Это явление объясняется ионным характером проводимости бетона. В случае насыщения этого материала водой легкорастворимые компоненты цементного камня переходят в жидкую фазу, что приводит к приобретению им свойств полупроводника с низким удельным электросопротивлением. При испарении влаги сопротивление бетона растет.

Способы регулирования электропроводности бетона

В практике усовершенствования свойств бетона рассматривались разные методы регулирования его электрических характеристик. Большинство из этих способов состоит в предотвращении проникновения влаги в структуру материала и, соответственно, ее влияния на изменение электросопротивления.

Читать еще:  Расширение дверного проема в бетонной стене

Во Франции предлагался «изоляционный бетон Ламберта», в составе которого имеются водные битумные эмульсии, которые заполняют поры в теле бетона, что затрудняет насыщение водой, и, соответственно, обеспечивает стабильное значение электросопротивления. Существует аналогичная технология производства электроизоляционного бетона, которая предполагает его предварительную сушку и покрытие или пропитку различными изоляционными составами. Такой материал применяется для монтажа токоограничивающих бетонных реакторов.

Чтобы повысить электросопротивление бетона для железобетонных шпал, предлагалось вводить в его состав ионно-обменные смолы, связывающие свободные ионы, образующиеся при насыщении бетона влагой. В результате снижалась электропроводность жидкой фазы и всего бетона. Кроме того, изоляционные бетоны предлагалось изготавливать путем замены цементной связки полимерной. Этот метод лег в основу технологии производства электроизоляционных пластобетонов, например, эпоксидного бетона.

Что касается возможностей использования проводящих свойств увлажненного бетона, то подобные технологии получили ограниченное распространение. Это объясняется низкой стойкостью материала при прохождении тока и увеличением электросопротивления при отрицательных температурах, когда вода переходит в твердое состояние.

Ранее для упрощения создания электропроводного материала использовался подход, при котором бетон рассматривали, как электрически однородный объект, и не учитывали в достаточной мере его фазовый и химический состав, макро- и микроструктуру, особенности протекания физико-химических процессов. На современном этапе исследования возможности получения токопроводящих или изоляционных бетонов базируются на других принципах.

При разработке технологии изготовления изоляционных бетонов, учитываются свойства компонентов цементного вяжущего, а также их различных сочетаний. Такой подход позволяет выделить составы, которые в наибольшей степени приближаются к диэлектрикам. Кроме того, ведутся работы в установлении влияния пористости бетона на его изоляционные свойства.

В случае разработки электропроводящих бетонов основное внимание уделяется подбору токопроводящих добавок, изменяющих характеристики материала. Еще одним методом повышения электропроводности считается создание специального композиционного бетона с функциями проводника электрического тока. Результатом этих работ стало создание электропроводящего бетона – бетэла, который может применяться в качестве конструкционного и электротехнического материала.

Характеристики бетэла

Регулирование структуры и фазового состава цементного камня и самого бетона, наряду с применением токопроводящих добавок, считается одним из главных направлений получения бетона с заданными электрическими характеристиками. Это достигается путем правильного выбора исходного заполнителя, вяжущего и добавок, а также созданием оптимальных условий твердения.

Рисунок 3. Принципиальная схема бетэла: 1 – песок (диэлектрик-наполнитель); 2 – электропроводный металлосиликат; 3 – гелевая оболочка; 4 – агрегаты металлического порошка; 5 – агрегаты цемента

При изготовлении бетона может использоваться различная связка, по которой и названы типы материала:

  • пластобетон;
  • составы на цементном вяжущем;
  • полимерцементный бетон.

С точки зрения конструктивной, электрической и экономической эффективности наиболее подходящим считаются составы на цементном вяжущем, поскольку они, кроме высоких технико-экономических и конструктивных показателей, обладают достаточно хорошей дугостойкостью и короностойкостью.

Предварительные исследования электрических и прочностных свойств бетэла показывают, что при его изготовлении можно обеспечить большой диапазон механических и электрических параметров:

  • объемный вес: от 1,8 до 2,2 г/см 2 ;
  • прочность на растяжение: от 15 до 30 кг/см 2 ;
  • прочность на сжатие: от 85 до 250 кг/см 2 ;
  • удельное электрическое сопротивление: от 10 до 104 Омсм;
  • допустимая плотность тока: от 10 до 0,1 А/см 2 ;
  • рабочий диапазон температуры: от 60 до 150 °С;
  • допустимая скорость перегрева: 200 °С/с;
  • рабочая температура перегрева: 120 °С;
  • удельная разрушающая энергия в случае однократного включения токовой нагрузки: от 230 до 300 Втс/см 3 ;
  • удельная теплоемкость: 0,22 ккал/г°С;
  • удельный объем, при котором происходит рассеивание 1 МВтс энергии при перегреве материала на 1°С: 0,57.

Перспективы применения бетэла

Электропроводящие бетоны характеризуются относительно низкой себестоимостью и технологической доступностью. Только в некоторых случаях их стоимость будет незначительно превышать цену обычных строительных бетонов. Этот факт объясняется использованием при изготовлении электропроводящих бетонных смесей и конечных ЖБК распространенных компонентов (вяжущих, добавок, заполнителей), а также применением освоенных промышленностью технологических процессов.

Бетэл может широко применяться для решения широкого спектра задач в гражданском и сельскохозяйственном строительстве. Например, из него могут изготавливаться панели перекрытий и стен, кровля с внутренним водостоком, полы, фундаменты опор ЛЭП и другие ЖБИ.

Рисунок 4. Электросетевая конструкция из бетона и бетэла: а) ЭК с заземляющей оболочкой из бетона; б) ЭК с нижней частью целиком из бетэла: 1 – бетэл; 2 – арматура; 3 – строительный бетон; 4 – грунт.

При прохождении электротока бетэл, как и всякий другой проводник, подвергается нагреву. Это свойство может использоваться для монтажа электроотопительных элементов зданий. При этом в качестве основных нагревательных элементов можно использовать стандартные плиты перекрытий и стеновые панели, что не требует больших изменений технологической оснастки и конструкций этих элементов.

В случае применения электропроводящего бетона существует возможность замены сложных систем отопления, обеспечивается возможность обеспечения индивидуального микроклимата для жилых помещений, сокращаются сроки монтажа зданий, снижаются эксплуатационные расходы, принципиально изменяются технологии строительства отдельных узлов.

Электропроводящий бетон

Владельцы патента RU 2665324:

Изобретение относится к строительству и электроэнергетике и, в частности, к области создания композиционных материалов на основе природного и техногенного сырья с получением электропроводящего бетона, обладающего электропроводностью и удельным сопротивлением, достаточным для того, чтобы использовать материал в качестве электропроводящего конструкционного и нагревательного конструкционного материала, а также изготовления элементов заземляющих устройств и антистатических полов. Электропроводящий бетон включает портландцемент, песок, воду и углеродсодержащий компонент, в нем дополнительно используют золу уноса и гиперпластификатор, при следующем соотношении компонентов, мас.%: портландцемент 10-14; песок 14-19; зола уноса 13-18; углеродсодержащий компонент 11,8-15,8; гиперпластификатор 0,2; вода 42. При этом в качестве песка применяется термозитовый песок, а в качестве углеродсодержащего компонента — углеродистый шлам алюминиевого производства. Кроме того, все сухие компоненты подвергают механохимической активации в варио-планетарной мельнице до удельной поверхности 550 м 2 /кг. Технический результат — оптимизация регулирования структурообразования и гомогенизация многокомпонентной системы, а также снижение стоимости конечной продукции, энерго- и ресурсоемкости производства. 1 з.п. ф-лы, 2 табл.

Изобретение относится к строительству и электроэнергетике и, в частности, к области создания композиционных материалов на основе природного и техногенного сырья с получением электропроводящего бетона, обладающего электропроводностью и удельным сопротивлением, достаточным для того, чтобы использовать материал в качестве электропроводящего конструкционного и нагревательного конструкционного материала, а также изготовления элементов заземляющих устройств и антистатических полов.

Известен резистивный композиционный материал, состоящий из компонентов: быстротвердеющий цемент – в весовом проценте 34-56; крупнодисперсная фракция шамота с размером частиц 0,15-2,5 мм – в весовом проценте 1-35; кварцевый песок, фракция 0,2-2,5 мм – в весовом проценте 1-34; коллоидный графит – в весовом проценте 3-15; мелкодисперсная фракция шамота с размером частиц от 0,05 до 0,09 мм — в весовом проценте 0,1-15; электрокорунд, фракция 0,1-0,5 мм – в весовом проценте от 0,1 до 20; минеральное волокно длиной от 3 до 10 мм – в весовом проценте от 0 до 5 (см. патент РФ № 2231845, МПК H01C7/00, 2004 г.).

Читать еще:  Сколько сохнет бетонная стяжка

К недостаткам данного материала относятся сложная рецептура и высокая цена большинства компонентов.

Известны составы электропроводящего бетона, которые включают 1-20% портландцемента, 18-85 % золы и воду (см. патент US6461424 В1, 2002 г.).

Недостатком такого материала является низкий предел прочности на сжатие – 8,3 МПа.

Наиболее близким, принятым за прототип, является электропроводящий бетон, содержащий цемент, песок, воду и порошкообразный графит, при следующем соотношении, мас.%:

(см. патент РФ № 2291130, МПК C04B28/04; C04B111/94, 2007 г.).

Недостатками электропроводящего бетона являются низкие прочностные характеристики, сложность регулирования структурообразования и гомогенизации многокомпонентных систем, наличие ограниченной формы конечной продукции, что сужает спектр применения изделий и систем на их основе.

Предлагаемое изобретение решает задачу увеличения сырьевой базы для производства электропроводящих бетонов с широким диапазоном потребительских свойств.

Технический результат, который достигается при решении поставленной задачи, выражается в оптимальном регулировании структурообразования и гомогенизации многокомпонентной системы как за счет применения в составе бетонной смеси углеродных веществ, так и за счет совместного помола компонентов, а также снижении стоимости конечной продукции за счет использования в составе бетона техногенных отходов, что позволяет снизить энерго- и ресурсоемкость производства.

Поставленная задача решается тем, что электропроводящий бетон, включающий портландцемент, песок, воду и углеродсодержащий компонент, отличается тем, что в нем дополнительно используют золу уноса и гиперпластификатор, при следующем соотношении компонентов, мас.%: портландцемент 10-14; песок 14-19; зола уноса 13-18; углеродсодержащий компонент 11,8-15,8; гиперпластификатор 0,2; вода 42.

При этом в качестве песка применяется термозитовый песок, а в качестве углеродсодержащего компонента — углеродистый шлам алюминиевого производства. Кроме того, все сухие компоненты подвергают механохимической активации в варио-планетарной мельнице до удельной поверхности 550 м 2 /кг.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.

Признак, указывающий, что «дополнительно используют золу уноса» позволяет достичь снижения расхода портландцемента путем замены его активированным наполнителем техногенного происхождения.

Признак, указывающий, что «дополнительно используют гиперпластификатор», позволяет улучшить реологические характеристики бетонной смеси.

Признак, указывающий, что «…в качестве песка применяется термозитовый песок, а в качестве углеродсодержащего компонента — углеродистый шлам алюминиевого производства…», позволяет снизить себестоимость производства бетона за счет применения дешевых отходов производства.

Признак, указывающий, что «…все сухие компоненты подвергают механической активации…», позволяет усилить реакционную способность активированного вещества без изменений его состава или строения.

Признаки, указывающие на соотношение масс, направлены на оптимизацию состава, направленную на достижение технического результата.

Электропроводящий бетон готовят следующим образом.

Из углеродистого шлама в ходе тепловой обработки удаляют избыточную влагу до 0,5%. Добавляют остальные сухие компоненты (табл.1) и совместно измельчают в варио-планетарной мельнице до удельной поверхности 550 м 2 /кг, что способствует увеличению его реакционной способности и эффективности применения за счет механохимической активации. Полученную сухую смесь затворяют водой при водовяжущем отношении 0,42 (табл.2).

Бетон электропроводящий

Большое внимание уделяется в настоящее время не только исследованию физико-механических свойств бетона, но и его электротехническим характеристикам, разработке состава с заранее заданными электрическими характеристиками.

Если будет найден путь превращения бетона в электропроводящий материал, это приведет к революционным изменениям в строительстве и электроэнергетике.

Деление материалов на конструктивные и электротехнические всегда существовало во всех отраслях техники. Объяснить это можно тем, что известные электротехнические материалы из-за специфических физико-механических свойств, как правило, невозможно было использовать как конструктивные.

Обычный бетон при определенной температуре и влажности обладает способностью проводить электрический ток, но это его качество не является стабильным. Помимо этого, в большинстве случаев электропроводность обычного бетона приносила только вред, так как под воздействием блуждающих токов сильно повышалась коррозия арматуры в железобетонных изделиях.

Эту способность пытались использовать для заземления строительных конструкций, эксплуатирующихся под воздействием электрического тока. Но такое использование бетона возможно только в том случае, если он будет стабильным электропроводником, тогда как сезонные колебания температуры и влажности изменяло электрическое сопротивление бетона в 5-10 раз. Объясняется это тем, что насыщение бетона водой приводит к переходу легкорастворимых компонентов цементного камня в жидкую фазу и бетон становится полупроводником. Соответственно высушивание бетона приводит к резкому падению проводимости.

Улучшить электрические свойства бетона предлагалось разными способами, большинство из которых должно было воспрепятствовать проникновению влаги внутрь бетона или уменьшить ее воздействие. Во Франции был придуман, так называемый, «изоляционный бетон Ламберта», который приготавливался на водных битумных эмульсиях. Битум, заполняя поры в теле бетона, затруднял его увлажнение, стабилизируя электрическое сопротивление. Для повышения электросопротивления бетона, используемого для изготовления железобетонных шпал, в состав его вводили ионно-обменные смолы, которые связывали появляющиеся при увлажнении бетона свободные ионы, что приводило к снижению электропроводности жидкой фазы бетона, и всего материала в целом. Также, высказывались предложения полностью заменить цементную связку на полимерную, чтобы получить изоляционный бетон. Но до сих пор, попытки использовать проводящие свойства бетона во влажном состоянии не имели большого успеха.

В основу нынешних научных исследований положен совершенно другой принцип получения как токопроводящих, так и изоляционных бетонов:

  • для изоляционных бетонов ведется комплексное изучение свойств компонентов цементного вяжущего и различных их сочетаний, чтобы выделить те из них, которые в наибольшей степени близки к диэлектрикам, изучение роли пористости бетона.
  • для электропроводящих бетонов ведутся изыскания токопроводящих добавок в бетонную смесь, которые изменят свойства бетона в сторону повышения электропроводности. На этой основе ведутся попытки создать композиционный материал — специальный бетон с характерными качествами проводника электрического тока.

В результате исследовательских работ был создан электропроводящий бетон, который назвали бетэлом. Бетэл наряду со стандартными конструктивными свойствами обладает способностью проводить электрический ток. Предварительные исследования прочностных и электрических свойств бетэла показали, что он может быть получен с большим диапазоном электрических и механических свойств. Бетэл может найти широкое применение для изготовления панелей стен и перекрытий, полов, кровель с внутренним водостоком, фундаментов опор линий ЛЭП и так далее.

Как любой проводник при прохождении тока, бетэл нагревается, что позволит применять его для создания электроотопительных элементов строительных сооружений. В качестве нагревательных элементов можно будет использовать обычные стеновые панели и плиты межэтажных перекрытий. Конструкции из электропроводящего бетона позволят отказаться от сложных существующих систем отопления, позволят предложить множество принципиально новых решений, приведут к снижению эксплуатационных расходов, особенно в условиях холодного климата.

Планово-предупредительный ремонт — ППР – это комплекс мероприятий по надзору, обслуживанию и ремонту, которые регулярно проводятся по заранее составленному плану. Система ППР позволяет предупредить преждевременный износ технологического оборудования, вовремя его отремонтировать, предупредив аварии, постоянно поддерживать его в эксплуатационной готовности.

Ссылка на основную публикацию
Adblock
detector